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It is the aim of this paper to describe two different linearization procedures 
for the Boltzmann equation in a k = 0  Robertson-Walker space-time. These 
procedures are discussed with a view to obtaining an asymptotic form of the 
Boltzmann equation for the late stages of cosmic expansion where the behavior 
appropriate to a nonrelativistic gas is encountered. Using the asymptotic kinetic 
equations, a necessary and sufficient condition is formulated under which every 
small perturbation of the equilibrium distribution function, either classical or 
relativistic, decays to zero as time goes on. The same condition can be extracted 
from each of two linearization procedures, and in this sense a comparison is 
made of these approaches which reveals mutual agreement. Also, applying an 
asymptotic theory of the Einstein-Boltzmann system, we show that the final 
state of a gas is dust (i.e., a fluid with zero temperature and pressure). 
Comparison with the predictions of the Eckart fluid model is briefly presented. 

KEY WORDS: Boltzmann equation; Robertson-Walker space-times; linear- 
ization procedures; asymptotic kinetic equations; convergence to equilibrium; 
dust model; hydrodynamic description. 

1. INTRODUCTION 

In the relat ivis t ic  k inet ic  theory ,  1~'2~ we are of ten  in te res ted  in p rocesses  

close to equ i l i b r i um and  for t hose  it is r e a s o n a b l e  to use a l inear ized  fo rm 

of the B o l t z m a n n  equa t i on ,  t3~ O n e  m a y  rega rd  as be ing  a p p r o p r i a t e  to 

equ i l ib r ium any  d i s t r i b u t i o n  func t ion  such  as to  be left una l t e red  by coili- 

'Center of Mechanics, Institute of Fundamental Technological Research, Department of 
Fluid Mechanics, Polish Academy of Sciences, 00-049 Warsaw, Poland. 

-" Institute of Fundamental Technological Research, Department of Theory of Continuous 
Media, Polish Academy of Sciences, 00-049 Warsaw, Poland. 

1415 

0022-4715/94/0900-1415507.0010 ~, 1994 Plenum Publishing Corporation 



1416 Banach and Piekarski 

sions. However, although this definition is standard within the context of 
a special relativistic kinetic theory, its direct application to a fully general 
relativistic setting could lead to difficulties. As a typical example, it is 
known that the Maxwell-Jiittner distribution for a nondegenerate gas of 
massive particles cannot be a solution of the Boltzmann equation in an 
expanding universe. 14~ Nevertheless, it is always possible to try to linearize 
the general relativistic Boltzmann equation about the Maxwell-Jiittner dis- 
tribution function, ~51 and in fact about any other distribution function. The 
only true problem one faces in that approach is to show that the resulting 
linearized Boltzmann equation is consistent and soluble. 

The principal objective of this paper is to describe two different 
linearization procedures for the Boltzmann equation in a k = 0 Robertson- 
Walker space-time. The first approach linearizes the Boltzmann equation 
about a suitably chosen solution of Liouville's equation, denoted F, and 
called the classical equilibrium distribution function, and then obtains an 
asymptotic form of the linearized Boltzmann equation for the late stages of 
cosmic expansion where the behavior appropriate to a nonrelativistic gas 
is encountered. As to the choice of F, we propose to test the hypothesis that 
F is the Maxwellian distribution of microscopic momenta. 16) The second 
approach starts with essentially the same general program but uses the 
relativistic equilibrium phase density in place of F. We denote this density 
by F and call it the Maxwell-Jiittner distribution function. 

Because the linearized Boltzmann equations depend intricately on time 
through the expansion factor R in a k = 0 Robertson-Walker metric, these 
equations are still too complicated to be readily applied to simple calcul- 
ations. However, as we shall soon see, we may always effect a considerable 
but nontrivial simplification by carrying out the asymptotic expansion 
of the linearized Boltzmann equations with respect to an appropriately 
normalized temperature of the gas, thereby reducing them to much more 
tractable forms. In this context, we remark that the asymptotic expansion 
just mentioned is valid only for the late stages of cosmic expansion where 
ordinary matter behaves like a nonrelativistic gas. The additional con- 
clusion is that, although after a long time the elementary results can be 
deduced from a "nonrelativistic" treatment, our asymptotic equations for 
perturbations are essentially new and thus have no precise analog in the 
classical kinetic theory. 

Fixing attention on asymptotic forms of the linearized Boltzmann 
equations, we provide an explicit solution of the Cauchy problem. Later we 
shall use this solution to find a necessary and sufficient condition under 
which every small perturbation of the equilibrium distribution function, 
either classical or relativistic, decays to zero as time goes on. The same con- 
dition can be extracted from each of two linearization procedures, and in 
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this sense a comparison is made of these approaches which reveals mutual 
agreement. Moreover, the equivalence of both methods can be established 
in other ways. Various refinements, generalizations, and cosmological 
applications of the present method are possible, but are not pursued here. 
Instead an indication is given of some of the consequences of adopting the 
simple model. 

To illustrate the above, we shall give an example: At the late stages 
of cosmic expansion, it is commonly accepted that the matter can be 
reasonably represented as dust (i.e., a fluid with zero temperature and 
pressure). As shown by Hiscock and Salmonson, ~71 one of the paradoxes 
which have characterized the Eckart and Landau-Lifshitz theories of 
relativistic fluids has been the prediction of effects violating the properties 
of dust. The nature of this problem lies in the fact that the value of the 
product of the mean time of relaxation o-~ and Hubble's parameter H does 
not evolve toward zero, but, instead persists for all times and tends to 
infinity as t =~ co. Consequently, the well-known condition o-~H,~ 1 under 
which the macroscopic fluid theories are consistent with kinetic theory is 
not satisfied, and these theories cannot be used to study the asymptotic 
behavior of a cosmological fluid. 

Though inapplicable at the early stages of cosmic expansion, within its 
range of validity our direct method, which makes no assumptions concern- 
ing the value of o-~H, provides a more credible description than the 
hydrodynamic theories of relativistic fluids. As an illustration, the discus- 
sion of Section 6 not only leads to a self-contained cosmological model, but 
also shows that the dust solution is entirely consistent with the large-time 
behavior of a Boltzmann gas. This in turn seems to give a better frame- 
work for understanding the relation between the Einstein-Boltzmann and 
Einstein-Liouville equations (t ~ ~ ) .  

As to the physical interpretation of an assemblage of material particles, 
we may regard it as, e.g., a hydrogen gas during the matter-dominated 
epoch, since a redshift Z ~ I 0 0 0  until Z ~ 3 0  or so (see footnote7). 
Whether a more realistic two- or three-fluid model is analytically tractable 
is, at present, unclear. However, one can easily generalize our method by 
including the dark matter effects (cf. Section 7). 

Here we proceed as follows. In Section 2, we introduce the relativistic 
Boltzmann equation for the Robertson-Walker metric with fiat spatial 
sections. In Sections 3 and 4, two different linearization procedures are 
described and asymptotic forms of the corresponding linearized Boltzmann 
equations are derived. The auxiliary technical material, being in fact a 
supplement to Section 3.3, is included as Appendices A and B. Section 5 
provides explicit solutions of the asymptotic kinetic equations and then 
studies their elementary properties. In Sections 2-5, we assume that the 
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expansion factor R in a k = 0 Robertson-Walker metric is a given function 
of the time coordinate t. We also postulate that this function increases with 
increasing t and satisfies the condition 

lim R(t) = oo (1.1) 
t ~ e t 2 -  

The problem of solving the full Einstein-Boltzmann system, which governs 
the temporal evolution of the distribution function f and the expansion 
factor R, is briefly discussed in Section 6. Section 7 is for final remarks. 

2. P R E L I M I N A R I E S  

For simplicity, we shall consider only a one-component classical 
relativistic gas of particles with rest mass m 4:0 in a k = 0  Robertson- 
Walker space-time, 

gRW:= -c2 dt(~dtq-R2(t)[dxlQdxl +dx2~dx2 Wdx3(~dx 3] (2.1) 

so it can be described by a singlet distribution function f(t ,  pk). The 
components of the particle four-momentum p with respect to a local 
orthonormal tetrad {c - '  O/Ot, R -a O/ax k } will be denoted by p=. In what 
follows, Latin indices will range from 1 to 3, Greek indices from 0 to 3. 

We postulate that f satisfies the Boltzmann equation, which in the 
present case takes the form {~'s'9~ 

O~ - Hpk = I(f, f )  (2.2) 

where I(f, f )  is the collision term and H is Hubble's parameter: 

n :=  k/R (2.3) 

It is instructive to define the bilinear form 

of, l(f ,  h ) : =  8--~ p-~ d3p' dI2 gsa(g, O)(f'h'l + f '~h ' -  f h , - f , h )  (2.4) 

in terms of which the collision term is I(f, f) .  The notation is conventional. 
As abbreviations we use the symbol f l  for f(t,  p~), f '  for f(t,  p,k), and f'j 
for f(t,  p,k). Here p" and p~ are particle four-momenta before collision 
which produce p "  and p; ' ,  respectively, after an encounter. The values of 
the relative momenta of the particles before and after collision 

g=:= p ~ - p ' ,  g'~:= p ~ ' - p "  (2.5) 
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are calculated from 

g := (g~g~)~/2, g, := (g,,g,)~/2 = g (2.6) 

The scalar quanti ty s times c can be regarded as being the total micro- 
scopic energy in the center-of-mass frame: 

s := ( - s=s~)  '/2 = (4rn2c 2 + g2)1/2 (2.7a) 

ct s~ := P~' + Pl -- P': ' + P't ~ = s'~ (2.7b) 

As to the symbol  d-Q in (2.4), this is an area element on the unit sphere in 
the three-space normal  to s=: 

dO := sin(O) dO d~ ,  ~ [0, 2~), O ~ [0, ~]  (2.8a) 

cos(O) := (gg ' ) -~ g'~g~ = g-eg,~g~ (2.8b) 

Clearly, O defines the angle of  scattering. 
In order to complete the specification of the integral in (2.4), we must 

supply the scattering cross section a observed in the center-of-mass frame 
as a given function of the collision invariants g and O. For  concreteness 
sake, we assume that  

a(g, O) = ao[(mc) i - j  a, gi + g - j ]  sinq(O) (2.9) 

where ao, a j ,  i, j,  q are constants.  Two cases can be distinguished. If j >  0, 
we set 

a o > 0 ,  a ~ > 0 ,  - 2 < q ~ < 0  (2.10a) 

0 ~ < i < q + 2 ,  - 1 - q < j ~ < l  (2.10b) 

If j = 0, we write 

al = 0 ,  a o =  2r 2, q = 0  (2.11) 

and characterize the quanti ty r by saying that 2r is the diameter  of the 
particle. 

The theory based upon (2.9)-(2.11) corresponds to the so-called 
relativistic hard interactions and can be used to demonst ra te  the exponen- 
tial decay and asymptot ic  approach  to fluid dynamics of general solutions 
of the linearized Bol tzmann equation. To  the best of our knowledge, this 
was first shown by Dudyflski and Ekiei-Je~ewska. ~3~ As a mat ter  of fact, we 
impose here stronger restrictions on the class of  possible scattering cross 
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sections than those proposed in ref. 3, because some additional,  specializing 
assumptions are necessary if the correct nonrelativistic limit of the 
relativistic kinetic theory is to follow. 

3. L INEARIZATION A B O U T  THE M A X W E L L I A N  D ISTRIBUTION 

3.1. Def ini t ion of a Maxwel l ian  Molecular  Density 

The Maxwellian distribution function is given by 

r /  

F(z) := (2~rnka T) 3/2 exp( - z  2) (3.1a) 

where ks  is the Bol tzmann constant  and z is characterized by 

z := (ykyk)t/2, yk := (2ink a T ) -  1/,_ p~ (3.1b) 

The parameters  n and T depend in general on time. We refer to mn as the 
classical equilibrium mass density and to T as the classical equilibrium 
temperature.  We assume further that  F satisfies the Liouville equat ion 

Ofot HP* ~--~fp k=O (3.2) 

F rom this assumpt ion one can read off conditions that n and T be related 
to the expansion factor R by 

n(t) := 4rwgR-3(t), co = const (3.3a) 

T(t) := wkffIR-2(t), w = const (3.3b) 

Combining  (3.3a) and (3.3b) then yields 

(2rcmk a T) 3/2 - (row-) 3/2 const (3.4) 

3.2. The Al ternat ive Form of the Boltzmann Equation 

i t is always possible to define the perturbation with respect to F and 
to look for a solution of the Boitzmann equation in the form 

f(t, pk)= F(z)[1 + ~b(t, )4)3 (3.5) 
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Using (3.5), one can now express Eq. (2.2) in terms of ~ only, 

O,~ = I I ( F ,  F) +2I(F,  F~O ) + I I ( F ~ ,  F~ ) (3.6) 

With the definitions 

y ~  : =  

G : =  

g ,  := 

tr ,(g, ,  O):= 

we readily find 

where 

k s T  
mc'- (3.7a) 

(2mkaT) -m p~ , z, :=(y~y,k) 1/2 (3.7b) 

[ (y]  --yk)(ylt. --yk)] 1/2 (3.7c) 

- ~ [(1 + 2~cz~)t/2- (1 +2xz2)~/212+G 2 (3.7d) 

[aj(2~') "§ g.  +g.J]  sinq(O) (3.7e) 

F-  t ( Fd/, F~o ) = oJ~( ~, q~ ) (3.8a) 

Hence 

no" o 
V .-- 4rt3/2 m (2mks T) It -n/2 (3.8b) 

J~.(~k, q~) : = I  d3yj dO exp(z 2) tr , ,~.~.(~,  q~) (3.8c) 

[ ' '  L + L g; l 
~ := (1 +2~'z2)(1 +2~z~)J g* (3.8d) 

~(~b, ~o):= exp[--(z ')2-(z '~)2](~, ' r  + ~,'~ q~') 

- e x p [ - ( z )  2 - (z~)2](~q~j + r q~) (3.8e) 

r { l f f k l , l . ~ l / 2  k , "; : =  ',..,' J x t  ~ ~1 " - -  1/2 
" - - ( ) 1  Ylk) (3.8f) 

y,* := (2inks T)- i/2 p,,, ),'l k := (2mkB T)- 1/2 p,lk (3.8g) 

8,r 1)+ 2J~.(l, ~,)+ J~.(~, if)} (3.9) 

Note that (3.9) is exact and is equivalent to the original Boltzmann 
integrodifferentiai equation. 
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The inverse of o deserves to be regarded as the classical effective time 
of relaxation. Substituting (3.3) into (3.8b), we conclude that o depends 
on time through the expansion factor R. The same remark concerns the 
normalized temperature h" as defined by (3.7a). It is easy to verify that 
the condition J~(1, 1 ) = 0  does not hold in the relativistic kinetic theory 
except in some kind of limit in which x becomes zero. Thus, none of the 
Maxwellian distribution functions can serve to give a solution to the 
relativistic Boltzmann equation. Clearly, this does not mean that we cannot 
linearize the Boltzmann equation about F. The only true problem one faces 
in that approach is to show that the resulting kinetic equation for ~b be 
consistent and soluble. 

3.3. The Asymptot ic  Kinetic Equation Deduced f rom (3.9) 

Because of the nonlinear nature of the collision term, the Boltzmann 
equation as defined by (2.2) or by (3.9) is very difficult to solve and to 
analyze. The linear approximation is a familiar mathematical technique. 
Here, if K and r are small, it consists in linearizing J~.(~O, q~) with respect 
to x and in neglecting, in the expression on the rhs of (3.9), nonlinear terms 
in the perturbation variables x, ~bl The relative simplification it introduces 
need hardly be stressed. Moreover, this simplification is valid for the 
late stages of cosmic expansion where the behavior appropriate to a non- 
relativistic gas is encountered. By way of digression, the well-known 
problem of gauge-invariant quantities does not appear here, because we 
regard R as a given function of time. 

In order to linearize the Boltzmann equation with respect to x and ~,, 
we must first establish the limiting dependence of K-1J~,.(1, 1) and J~.(l, ~b) 
on x as K tends to zero. From the analysis of Appendices A and B it follows 
that 

lim [J~(1, ~)]  = --1L[~,] (3.10a) 
K ~ 0  

lim [~:-~J,,(1, 1)] = � 8 9  (3.10b) 
t,:~O 

where 

L [ ~ ]  := 2 f d3yl dI2 exp( -z~)  GaN(G, O) 

x ( ~ + ~ j  - ~ b ' -  ~b'l)lm (3.11a) 

aN(G, O) := G -~ sinq(O) (3.1 lb) 

( ~ + ~ -  ~b'-~b't)lu , := lim (~b + ~ '1-  ~b'- ~b't) (3.11c) 
h '~O 

Q(z) : :  - ~ - -  5.-'2 -~- Z 4 (3.1 ld) 
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Now, a glance at (3.11a)-(3.11c) shows that L is the classical collision 
operator, ~6~ as it should be. An important aspect of these calculations is 
that the dominant parts of J~.(1, 1) and J~(1, ~O) are given by �89 and 
-�89 respectively, and that they can be expressed in terms of the 
classical collision operator. In Appendices A and B, we outline only the 
proof of (3.10b). As to (3.10a), this is an obvious result valid for those 
perturbations which fall off sufficiently rapidly with increasing z. 

To the required linear approximation, which makes no reference to 
physical arguments relating collision times to expansion times, Eq. (3.9) 
becomes 

8,~ = o{�89 - LE~'] } (3.12) 

Our objective in this paper is to solve Eq. (3.12), which gives the desired 
information about the gas in the nonrelativistic range of temperatures, 
without solving the original Boltzmann equation, which would give the 
most complete information possible. Also, it seems that the analytical 
problem for any case other than that described here must be extremely 
difficult. Now, it is a straightforward matter to verify that @ = 0 does not 
satisfy (3.12). This is just what we found previously in the case of (3.9). 
Thus our asymptotic equation differs substantially from the iinearized 
Boltzmann equation as derived within the framework of a classical kinetic 
theory. 

We now turn to a brief treatment of the source term appearing on the 
rhs of (3.12). The exact form of L[Q] depends in a rather complicated way 
on j and q Ecf. Eq. (3 . l ib)] ,  and the most general expression for L[Q] 
is clearly impossibly cumbersome. For simplicity, we consider only two 
representative cases. 

"Maxwellian" particles ( j  = 1) 

L[ Q ] = 2zcs/Z~Q (3.13a) 

~ := sin~ + 3(O)dO (3.13b) 

Hard-sphere model ( j = 0 ,  q = 0 )  

L[Q] = ~5/2 lz eft(z) 13 - 2z 2 - 12z 4 + ~ z 6 

+ 8~ 2 - ~ z ' - + ~ z  e x p ( - z  2) (3.14a) 

erf(z) := 2rt -i/z f f  exp( - x  z) dx (3.14b) 
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4. L INEARIZATION A B O U T  THE M A X W E L L - J O T T N E R  
D I S T R I B U T I O N  

4.1. Def in i t ion of the  Equi l ibr ium Phase Densi ty  

In the relativistic kinetic theory, we regard as being appropriate to 
equilibrium any molecular-density function F such as to be left unaltered 
by collisions: 

I(F, F ) = 0  (4.1) 

If we recall the conditions stated in the introduction, we conclude that any 
such F is of the form 

- 3  ( " - cP~ F := (2r~h) exp \ k - ~ - J  (4.2) 

where 2~h is Planck's constant and/~ and 0 are arbitrary functions of time. 
In what follows, we refer to D= as the Maxwell-Jiittner distribution function. 

Introducing the abbreviations [cf. also Eqs. (3.1b), (3.3), and (3.7a)] 

(2~mkBT)  3/2 ( l a - l n c 2 )  
A . -  (27th) 3 n exp \ kB~9 j (4.3a) 

B := T/,9 (4.3b) 

we find that the Maxwell-Jiittner distribution function becomes 

. [ l 
0: = A (2rtmk B T)3/, - exp - 1 + (1 + 2hzz2)l/2J (4.4) 

For simplicity, we now postulate that A and B depend on time only 
through the normalized temperature x, 

A = A(x), B = B(h') (4.5a) 

and that 

lim [A(x)] = 1, lim [B(x)] --- 1 (4.5b) 
s , ' ~ O  K ~ O  

We also assume that A and B are differentiable with respect to • (~: > 0). 
With a general choice of the functions A and B, we should find that these 
functions were not themselves expressed in terms of the expansion factor R 
alone, and we could not complete our program of making the linearization 
of (2.2) about U: tractable. 
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4.2. Another  Form of the Boltzmann Equation 

We continue to denote the perturbation by ~,, but it is now defined by 
the statement that 

f(t, pk)= F(t, z)[1 + ~,(t, y*)] 

The counterpart of Eq. (3.9) is then 

0,~b = KT~.(1 +#J)+vA{2I,,.(I, ~)+I,,.(~, #J)} 

where 

(4.6) 

(4.7) 

4 Hz 2 
?~.(t, z) := 2A - ' A ' H -  1 +(1  + 2Kz2) 1/2 

X B'--(1 +2K7.2) 1/2 [1 + (1 + 2KZ2) 1/2] (4.8a) 

dA dB 
A' : = - - ,  B' : = -  (4.8b) 

dE dE 

I,.(~b, q~):= (oAOZ) - '  I(F~b, Fop) (4.8c) 

Concerning the definition of H and o, see Eqs. (2.3) and (3.8b). As to the 
explicit definition of I~(44 ~o), it may be noted that if we set 

z ,  :=z, zl, z', z'l (4.9) 

and replace exp( _ z , )  by 

[ l exp~.(_+z2,) :=exp --- 1 +(1  +2Kz2,)~/2J (4.10) 

in (3.8c) and (3.8e), then I~.(~,, ~o) is given by the expression on the rhs 
of (3.8c). 

Since 7~-~ H, it is an easy matter to verify that ~, = 0 does not obey 
(4.7) when H # 0 .  Thus, just as in the case of F, the Maxwell-Jiittner 
distribution function for massive particles cannot be a solution of the 
Boltzmann equation in an expanding universe. 141 The calculations leading 
to (4.7) are exact, but there is an important difference between (3.9) and 
(4.7). In the first approach the function ~0(t, y*) does not depend on time 
when the effects of particle collisions can be neglected (ao = 0), whereas in 
the second approach the unperturbed problem is characterized by 

0,ff = K~,~(I +~,) (4.11) 
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The difference arises from the influential role played by the time-dependent 
functions A, B, and x. Nevertheless, the general approach adopted in this 
section can follow much the same lines as those already made familiar, in 
that the complicated expression on the rhs of (4.7) is linearized with respect 
to x and qs, and we seek asymptotic solutions of interest for the late stages 
of cosmic expansion where the behavior appropriate to a nonrelativistic gas 
is encountered. It is only necessary to adjust suitably the functions A and 
B by the procedure described in Section 4.4, and this clearly establishes 
the link between both methods, though the description of the linearization 
procedure can be put most vividly in the first method for which the unper- 
turbed problem is 

O,qs = 0 (4.12) 

4.3. So lu t ion  of  the  U n p e r t u r b e d  Prob lem 

In the absence of collisions, Eq. (4.11) gives information about the rate 
of change of ~b due to the fact that H4 :0  ( H > 0 ) .  The solution of the 
unperturbed problem is 

F(to, z) [1 + ~b(to, yk)] _ 1 (4.13) ~b(t, y k ) _  F(t, z)" 

where t >i t o and t o represents the initial time (to > 0). In order to evaluate 
the magnitude of ~O at time t, we define the norm Iqs(t)ll,i as follows: 

2Bz2 -1 
I~b(t)tl,l:=Art-3/'-Iexp - l + ( l + 2 x z 2 ) ~ / 2 J l ~ ( t ' y k ) l d 3 y  (4.14) 

Consider, for simplicity, the case in which A = 1 and B = 1. Then an appeal 
to the well-known properties of the Bessel functions .51 yields 

I~'(t)l,,~<Zxo(1 +8Ko+28XoZ+44Xo3+ZlKg)+ I~b(to)l~,o~ (4.15a) 

where 

Ko := K(to) (4.15b) 

In obtaining (4.15a), we have made use of the fact that for H > 0  the 
normalized temperature x is a decreasing function of time. 

It appears from (4.15a) that [~O(t)ll,l,~ 1 if Xo has a value appreciably 
less than one and if the perturbation ~O is small initially. Also, let us observe 
that, although under certain circumstances the perturbation ~, is negligibly 
small for all times (t >/to), it does not actually approach zero as time goes 
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on. This last conclusion can only be avoided by introducing the full 
Boltzmann equation and by considering a situation in which the rate of 
growth of the effective time of relaxation is no greater than that of the 
inverse of Hubble's parameter (cf. Section 5). 

4.4. The Asymptotic Kinetic Equation Deduced from (4.7) 

So far, the differentiable functions A and B satisfying (4.5b) may vary 
in any way. We now define ~b E by 

I[ ]t O E : = F - I ( F - F ) = A e x p  z 2 1 - 1 + ( l + 2 x z 2 ) i / 2  - 1  (4.16) 

and impose the condition that the precise form of A and B arises solely 
from the analysis of the relations 

(1, ~bE) =0,  (z2, ~bE) = 0  (4.17) 

where 

7~ -3 /2  f exp(--z 2) ~k(.V k) ~O(.V*) day (4.18) (r ) qo 

The rigorous analysis of (4.17) is a cumbersome task, which cannot be 
performed on the level of generality that we are maintaining in this paper. 
Fortunately, the limiting case x = 0 can be treated easily, and we obtain in 
addition to (4.5b) the following results: 

lim {K- t [A(~ : ) - - I ]}=  lim E A ' ( x ) ] = ~  (4.19a) 
~,'~0 ~ 0  

lim { x - I [ B ( x ) - l ] } =  lim [B'(x)]=~_ (4.19b) 
~r t-." ~ 0 

Because of (4.8a), we then have 3 

lim [}'K(t, z)] = H(t) Q(z) (4.20) 

where the function Q(z) is defined by (3.11d). Moreover, as in (3.10a), we 
obtain 

lim [I~.(1, if)] = - � 89  (4.21) 
h'~O 

3In the nonrelat ivis t ic  range of temperatures,  (pA'pk)J;2 is about  (2mkaT) ~/2 for the vast 

majori ty of the particles. F rom (3.1b) we then conclude that  the typical value of z is very 
much smaller  than (2x)-~,2. Thus 2t,:z 2 ,~ I and "~,~.(t, z) is close to H(t) Q(z). 

822/76/5-6-22 
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L is the classical collision operator [cf. Eq. (3.11a)]. Clearly, L[~k] is a 
function of t and yk. 

Neglecting the terms which are nonlinear with respect to x, ap and 
adopting the approach of Section 3.3, we finally find that the asymptotic 
form of (4.7) is given by 

O,@=KHQ--oL[@] (4.22) 

Beginning from (4.22), full agreement can be achieved with the results of 
the kinetic theory based upon (3.12) even though (3.12) and (4.22) are not 
identical. We briefly study these problems in Section 5.2. Throughout 
Section 5 we shall be interested only in the asymptotic kinetic equations 
(3.12) and (4.22) rather than the original nonlinear Boltzmann equation. 
This is because the most general treatment cannot be elementary, and 
because it is useful to consider first the simple problem of solving the 
asymptotic kinetic equations. Nevertheless, although one has no hint 
toward solving (2.2), the complete discussion of (2.2) is certainly required 
for the deepest understanding of the problem, and would be expected to be 
capable of yielding the asymptotic solutions in the low-temperature limit. 

5. S O L U T I O N  OF THE A S Y M P T O T I C  KINETIC E Q U A T I O N S  

5.1. Calculat ions According to the First M e t h o d  

Equation (3.12) suggests the introduction of a Hilbert space ,g~ where 
the scalar product (~,  ~0) and the norm I1~'11 are defined by (4.18) and 
((~b, ~,))t/2, respectively. For the scattering cross sections 4 aN(G, O):= 
G-/sinq(O) corresponding to the classical hard interactions, tt~ we verify 
the existence of a positive constant 2 such that 

(@, Zl-~,-I ) >/2 I1~,112 (5.1) 

for all functions ~ orthogonal to @, := 1, yk, Z2. We define the subspace ~o 
of ~ as follows: 

~,, := {~, E ~ :  (~,  ~ , ) = 0 }  (5.2) 

Let us assume that ~b o :-- ~(to) belongs to the domain of the operator 

4Cf. Eqs. (2.9}-(2.11) as well as Eqs. (3.8b) and (3.11b). 



Boltzmann Equation in Robertson-Walker Space-Time 1429 

L; we denote this domain by ~(L).  For each ~ b o ~ ( L ) ,  Eq. (3.12) has a 
unique solution given by 

{- Ef;o--,*] 

From (5.1) and (5.3) we conclude immediately that if ~b o s ~ c~ ~(L),  then 
O(t) e ~,, and the norm of 0(t)  satisfies the inequality s 

IlO(t)ll <.)((to, t)IlqJoll + Y(to, t)IILl-a]ll (5.4a) 

where 

] X(to, t ) : = e x p  - 2  v(a) da (5.4b) 
0 

expE- Sio,s, s]. , 4c, 
Integrating by parts, we obtain another useful expression for Y(to, t): 

Y(to, t ) = l  {x( t ) -X( to)exp[-2 f'oo(a)dtr]t 

1 f, 'o~(a)exp[-2flo(s)ds]da (5.5) 
22 

Combining (3.3b) and (3.7a) yields 

~: = -2KR/R = - 2 K H  (5.6) 

For H >  0, the time derivative of K is negative and K(t ' )<K(t)  when t ' >  r 
Consequences of (5.4) are 

X(to, t)~<l when t>>,to (5.7a) 

1 Y(to, t)<~-~X(to) when t>~to (5.7b) 

Clearly, X(to, t) is a monotonically decreasing function of time. The 
inequalities (5.7) assert a kind of stability of the Maxwellian distribution 

In this context, we note that L[Q] belongs to ~,,n~(L). 
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function. Indeed, if H >  0 and ~b o ~ ~ ( L ) ,  the norm of the solution to (3.12) 
is bounded from above for all times, 6 

IIr ~< IIr + l  ~C(to)IILEQ]II (5.8) 

To  proceed further, we now add the following postulate: There exists the 
time t~, t= > t o ,  such that if t~  [to, t~], the rate of growth of the effective 
time of relaxation (2o)-  J is no greater than that  of the inverse of Hubble 's  
parameter  H, 7 

),o(t)>~ H(t),  t e  [to, t t ]  (5.9) 

From (5.4b), (5.5), and (5.6) it is then evident that  

X(to, t) <~ R(to)/R(t)  (5.10a) 

1 1 
Y(to, t) ~ -~2 re(t) + -~ X(to) R(to)/R(t  ) (5.10b) 

Consequently,  if t e [to, t~-I and ~b o e H o n ~ ( L ) ,  substi tution of (5.10) in 
(5.4a) enables us to say that there is a trend in time: the norm II~'(t)ll can 
be bounded by a function which decreases with increasing t. In the 
unrealistic but mathemat ical ly  interesting case (see footnote 7) when the 
inequality 20(0 >1 H(t)  holds for all times (t/> to), we have 

lim I1~,(/)11 = 0 (5.11) 
l ~ o z ,  

Interpret ing (5.11), we see that the inequality 20 > / H  delivers a necessary 
and sufficient condition under which every small per turbat ion of F tends to 
zero as t =~ ~ .  

5.2. Consistency Between (3.12) and (4.22) 

In the second method,  the definition of the per turbat ion ~ differs from 
that in the first method.  The implication is that the asymptot ic  kinetic 

6 For the hard-sphere model, we find from (3.14) that LIL[Q]II = 8 n 2 ( 1 7 n / 6 + 6 3 / 4  x/~) I/2. 
Fixing attention on this model, the application of the results of Pekeris et ak " ~  yields 2 i> 
0.7339(8n 2). In the case of "Maxwellian" particles [ cf. ( 3.13 ) ], we have II L [ Q ] II = 30 I/2~n 5/2. 

7 Since the k = 0 Robertson-Walker universe model expands asymptotically as R ~ t 2/~, there 
is an indication that for large enough t the inequality 2o(0 >/H(t) does not hold. However, 
we have verified that our postulate is reasonable and consistent over a large range of cosmic 
times. For example, (5.9) can be applied to study the time evolution of a hydrogen gas 
during the matter-dominated epoch since a redshift Z-~ 1000 until Z ~ 30 or so. The details 
of calculations are available on request. 
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equations (3.12) and (4.22) are not identical. Let tp be a solution of (3.9) 
and assume that ~, obeys (4.7). We say that q~ and qJ are equivalent if 

F(z)[1 + qJ(t, yk)] = ff:(t, z)[-1 + ~b(t, yk)]  

Equation (5.12) implies that 

(5.12) 

~o=~o-q,~ (5.13) 

where fie is given by (4.16). Because of (4.17) and (4.19), we may calculate 
the dominant  part of fiE. In the nonrelativistic range of z (see footnote 3), 
we have 

(5.14) r E(t, Z)= �89 Q(Z) + "" 

Substituting ~b = q~ - �89 into (4.22), we immediately see from (5.6) that ~k 
satisfies (4.22) if and only if q~ satisfies (3.12). Thus the kinetic theory based 
upon (3.12) is completely equivalent to that based upon (4.22). More 
specifically, use of (5.9) yields the conclusion that if if(to) E ~o n ~ (L ) ,  then 
the norm of the solution to (4.22) is bounded for t~ [to, t~] by a function 
which decreases with increasing t. When 2o(t)~> H(t) for all times (t >/to), 
the perturbat ion ~O(t) tends to zero as t=~ ~ .  

We summarize the above observations as follows. The same asymptotic 
behavior of f can be extracted from each of two linearization procedures, 
and in this sense a comparison is made of these approaches which reveals 
mutual agreement. 

6. C O M M E N T S  ON THE E INSTE IN-BOLTZMANN SYSTEM 

The symmetry of the Rober tson-Walker  metric requires that the mass 
density p, the energy density e, and the pressure 8 p are functions of the 
time coordinate t only. These functions must satisfy the following system of 
differential equations: n) 

~ + 3 p H = 0  (6.1a) 

g + 3 ( ~ + p ) H = 0  (6.1b) 

4rff~ 
I:t+ H z = - 3c---- T ( e+  3p) (6.1c) 

87r.~ 
H2 ='-~cZ ~ (6.1d) 

The symbol p here is not to be confused with the particle four-momentum also denoted by p. 
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In these equations, an overdot indicates differentiation with respect to time 
and ff is Newton's gravitational constant. 

Writing f in the form (3.5), as is always possible, it is only a matter 
of labor to prove that the functions p, e, p are related to the functions 9 n, 
~ , ~ b y  

( m n ) - '  p = 4 n  -j/2 z2 exp( -z2) [1  + ~b(t, z)] dz 

(mcZn)-  t e = 4re- ~/z zZ(1 + 2~zZ) 1/2 exp( - z 2 ) [  1 + r z)] dz 

(mc2n) - '  p = ]Tr- '/zh: z4(1 + 2xz z) -1/2 exp( --z2)[ 1 + r z)] dz 

(6.2a) 

(6.2b) 

(6.2c) 

For the purposes of this section we have replaced ~(t, yk) by ~k(t, z), since 
anisotropic perturbations are not in general consistent with the Robertson- 
Walker geometry, insofar as the full nonlinear Einstein-Boltzmann system 
is concerned. 

We have to solve the exact Boltzmann equation (3.9) and Eq. (6.1d) 
simultaneously for ~ and R. If ~, and R satisfy (3.9) and (6.1d), the remaining 
cosmological equations in (6.1) are automatically fulfilled because of (6.2). 
Given these remarks, we conclude that the Einstein-Boltzmann system 
consists of (3.9) and (6.1d). The exact Einstein-Boltzmann system is 
very difficult to solve and to analyze. A procedure analogous to that of 
Section 3.3 is possible, however. If ~ and x are small, we can linearize the 
"constitutive" expressions on the rhs of (6.2) with respect to r and x, so 
obtaining 

(ran) - l  p =  1 + (1, ~k) (6.3a) 

(mcZn) -~ e =  1 + (1, ~b) + 3~: (6.3b) 

(mc2n)-  l p = x (6.3c) 

These results, which are consistent with the equations of state for 
a nonrelativistic gas, validate our procedure. Indeed, if tp satisfies the 
asymptotic kinetic equation (3.12) and p, e, p are given by (6.3), the time 
derivative of (1, ~,) vanishes and the cosmological equations (6.1a) and 
(6.1b) are automatically fulfilled. In the low-temperature limit, the Einstein- 
Boltzmann system consists of (3.12), (6.1d), and (6.3b). This system can 
easily be solved, especially in the case when ~b is orthogonal to ~b.. The 

9We recall that n and ~ are defined by (3.3) and (3.7a). 
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cosmological equation (6.1c) in turn is obtained by differentiating (6.1d) 
with respect to time and then using (6.1b). We now see that our asymptotic 
procedure is a tractable formulation permitting a self-consistent calculation 
of ~, and R from a knowledge of ~,(to) and R(to). 

All these questions are, from the cosmological standpoint, questions 
about the large-time behavior of a Boltzmann gas. When so viewed, some 
of them can be answered very directly: The final state is dust. By this we 
mean that, for each value of m, 1~ the k = 0 Robertson-Walker universe 
model expands asymptotically a s  t 2/3 and the temperature T evolves as in 
a nonrelativistic gas, T.,. R -2. As explained already in ref. 7, the treatment 
of these problems by means of macroscopic models can lead to paradoxes 
(the "critical mass effect"). 

Another remark may also be in order. As the calculations giving (3.12) 
and (6.3) are valid for any expansion factor R satisfying (1.1), again the 
problem of gauge-invariant quantities does not appear here. Mathemati- 
cally speaking, this means that we do not introduce the notion of a back- 
ground solution for R: 

R(t) = Ro(t)[l  + r(t)] (6.4) 

Instead, we obtain the dynamical equations directly for ~ and R. 
One final word concerning the linearization procedure based upon 

(4.6). If we define the perturbation ~, by (4.6) rather than (3.5), the analysis 
of this section can be repeated essentially word for word with only slight 
technical changes in the method. 

7. F INAL R E M A R K S  

The method used to obtain a coupled system of dynamical equations 
for the evaluation of qJ(t, z) and R(t) may also be used, with slight extension, 
to describe the time evolution of ~,(t, z) and R(t) in the case when the spatial 
sections of a Robertson-Walker metric are no longer fiat. Since a suitably 
normalized Maxweilian density, and in fact any differentiable function ~t 
of- ,  satisfies the Liouville equation, again an asymptotic kinetic equation is 
found to hold for small enough ~k and K. 

Moreover, it seems reasonable to consider the possibility that dark 
mass interacts only gravitationally with the Boltzmann gas. If the dark 

~0 It is useful to observe that m = - ~  implies o - l H = , o o  [cf. Eq. (3.8b)]. Consequently, in 
place of the Eckart model (which is valid when o-~H~.  I), an asymptotic theory of the 
Einstein-Boltzmann system may be of interest. 

" If p" are components of the particle four-momentum with respect to { c -  ~ O/Ot, O/ax k }, then 
: is defined by : := (2mk~ T)-t . , .  (p~pk)l/2. 
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mass is in weakly interacting particles (here understood to include massive 
neutrinos), then it can be described by a phase-space distribution function 
obeying the Liouville equation. This equation is coupled to the Boltzmann 
equation only through the expansion factor R and the Einstein field equa- 
tions for its evaluation. Thus the system of asymptotic equations can be 
derived and solved as before. 

Restricting attention to the Robertson-Walker universe models, the 
potential virtues of the present method come to the fore when it is desirable 
to verify the existence of a unique solution of the Cauchy problem. Indeed, 
the existence and the uniqueness of the isotropic solution to the asymptotic 
system (3.12), (6.1d), and (6.3b) can easily be demonstrated. The more 
general problem of solving the full Einstein-Boltzmann system still seems 
to be an open problem even in the relatively simple theory for which the 
metric is given by (2.1). 

If one introduces an almost-Robertson-Walker model of the universe, 
the question of the stability of F or F arises. Interpreted from a slightly 
more general point of view, it would seem natural to extend the techniques 
developed in this paper to the investigation of various problems related 
to the large-scale structure of the  universe. We hope to discuss all these 
questions in the future. 

A P P E N D I X  A. S O M E  U S E F U L  A S Y M P T O T I C  F O R M U L A S  

We easily conclude from the mass-shell constraint that the normalized 
three-momenta of the particles after collisions, namely y,k and y'a k, are 
completely described by giving yk, yk and O, ~, x. A very convenient 
orthonormal triad to which the angles O, g~ can be referred has been intro- 
duced by Israel (ref. 8, p. 1173). The detailed description of this triad, while 
elementary, is formally too elaborate to present here. Fortunately, the dis- 
cussion may be considerably simplified by use of the exact but asymptotic 
expression for 

(z ' )  2 + (z'l)2 = y k y ,  k + Y'l*Y'lk (A.1) 

We specify this asymptotic expression as follows~2: 
Define 8 by 

gr:=�89 lim ( Q ' + Q ' I - Q - Q , )  (A.2) 
~." = >  0 

~2 The details of the proof, which are purely technical and require the full machinery of a 
relativistic kinetic theory, are available on request. 
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and suppose that z + z t < x ~, where 3 is a constant satisfying - �89 < 3 < 0. 
Then (z')2+ (z't)2 is characterized by 

(z')2 + (z',)2 = z 2 + z~ + Kg + X (A.3) 

and there is a constant &~ (which depends only on 6) such that 

I~1 ~ /~5K2 + 45(Z 2 "1- --'1) (A.4) 

What meaning is to be attached to (A.3) and (A.4)? If g as given by 
(A.2) is expressed in terms of (yk, y~) and (O, ~u), it is found from 
z + z ~ < x  athat  

I~gl ~ 5/~(Z"]-'~I '4 ~ 5 I +26(Z2 j < _~,- +z~) (A.5) 

By combination of (A.4) and (A.5), onc thcn shows that thc dominant part 
of ( z ' ) 2 + ( Z ' l ) 2 - z 2 - z ~  is K# for x ~ 0 .  

The above results when taken together with the inequality 
lexp(~)- 1 -~1 ~< I~12 exp(lr imply that 

e x p [ - ( z ' ) 2 - ( z ' l )  2] = e x p ( - z 2 - z ~ ) ( 1  - x g + Y )  (A.6a) 

where 

Z + Z l < h  '~, - - � 8 8  (A.6b) 

IYI ~ ~6 h.'2+66 '~ C5 K2+ 85 (A.6c) 

As regards Ba and C,~, these are constants which depend only on 3. 

A P P E N D I X  B. A S K E T C H  OF THE P R O O F  OF (3 .10b )  

We can split JK(1, 1) into two parts and then investigate these two 
parts separately. Making use of (3.8c), we have 

J~.( 1, 1)=Mt~f~+N~ '~ (B.la) 

where 

M~ 6~ := f. 
- + 21 <: ~r 

N(. 6) := ;_ 

-~<6<0 (B.Ib) 

d3)'t dl2 exp(z 2) a..#~.~.( 1, 1 ) (B.lc) 

d3yt dl2 exp(z 2) a..#~.~.( 1, 1 ) (B.ld) 
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F o r  z + z~ < K a, we apply  the asymptot ic  formulas of Appendix  A and the 
inequal i ty  ~3 

o [ ] 
( l+2h.z2)l /z  1 +  G ~ g , < . G  (B.2) 

in o rder  to prove that  

lim [ ~ - t  ~1 M~ ] = � 8 9  (B.3) 

F o r  z + z~/> K '~ and sufficiently small  values of K, a simple calculat ion based 
upon 

( Z ' ) 2  -..[- (Z"l )  2 ~ 1 (Z  1 - -  Z ) 2 ..-I- I ~ g . '  

shows that  

~(- - z)2 + z 2 (B.4) 

lim [h" 1 t~l I 0 N~. ~ = (B.5) 
t-." ~ 0 

Hence a sketch of the p roof  of (3.10b) is complete.  
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NOTE A D D E D  IN PROOF 

At the late stages of  cosmic expansion,  two asymptot ic  procedures  
described here are not  the only ones yielding simple results for the mot ion  
of a Bol tzmann gas. Another  approach ,  closer to geometrical  concepts,  is 
presented in refs. 12 and 13. It seems profi table to compare  and contras t  
the predict ions  of  these different theories. This will be done in a separate  
paper.  
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